Spectroscopic characterization of nitrogen plasma generated by waveguide-supplied coaxial-line-based nozzleless microwave source

Bartosz HRYCAK¹, Mariusz JASIŃSKI¹, Jerzy MIZERACZYK^{1, 2}

¹Centre for Plasma and Laser Engineering, The Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Sciences ul. Fiszera 14, 80-231 Gdańsk ²Department of Marine Electronics, Gdynia Maritime University, ul. Morska 81-87, 81-225 Gdynia

INTRODUCTION

SUBJECT:

Spectroscopic study of rotational and vibrational temperatures of selected heavy species in high flow rate atmospheric pressure microwave nitrogen plasma

MOTIVATION :

Development of microwave plasma technology at atmospheric pressure and high gas flow rates Determination of the plasma gas temperature from the rotational temperature of the heavy species [1-3]

APPLICATIONS :

Gas processing: production of hydrogen via hydrocarbons decomposition [4] hazardous gas treatment [5]

Comparison of the measured and simulated emission spectra of OH(A-X) rotational band and N₂ second positive system in nitrogen plasma ($P_A - 2 kW$, nitrogen flow rate - 50 l/min, 25 mm below the electrode end)

MICROWAVE PLASMA SOURCE (MPS)

EXPERIMENTAL SETUP

Comparisons of the measured and simulated emission spectra of N_2 + first negative system (for two different bands) in nitrogen plasma ($P_A - 2$ kW, nitrogen flow rate - 50 l/min, 25 mm below the electrode end)

Measured rotational and vibrational temperatures of OH radicals, N_2 molecules (a) and N_2 + ions (b) as a function of distance below inner electrode end (Distance BIEE) (P_A - 2 kW, nitrogen flow rate - 50 l/min)

Measured rotational and vibrational temperatures of OH radicals, N, molecules (a) and N,+ ions (b) as a function of microwave absorbed power P_A (nitrogen flow rate - 50 l/min, 25 mm below the electrode end)

The experimental setup for spectroscopic study of nitrogen microwave atmospheric pressure plasma at high flow rates

REFERENCES:

- [1] E. Pawelec, M. Simek, H. Nassar, et al.: Acta Physica Polonica A 89 (1996), 503
- [2] Ch. Izarra: J. Phys. D: Appl. Phys. 33 (2000), 1697
- [3] J. Raud, M. Laan, I. Jogi: J. Phys. D: Appl. Phys. 44 (2011), 345201
- [4] M. Jasinski, M. Dors, J. Mizeraczyk: J. Power Sources 181 (2008), 41
- [5] M. Jasinski, M. Dors, J. Mizeraczyk: Plasma Chem. Plasma Process. 29 (2009), 363
- [6] http://www.sri.com/psd/lifbase/
- [7] http://www.specair-radiation.net

Measured rotational and vibrational temperatures of OH radicals, N_2 molecules (a) and N_2 + ions (b) as a function of axial nitrogen flow rate $Q_{axial N2}$ (P_A - 4kW, 25 mm below the electrode end)

SUMMARY

- Solution of the second and from 4500 to 6500 K, respectively, depending on the location in the plasma, the microwave absorbed power and axial nitrogen flow rate. OH radicals and N_2 + ions from 463-472 nm band provided comparable results. N_2 molecules in all cases provided slightly lower temperatures.
- \odot The rotational and the vibrational temperatures of N₂ molecules as well as N_2 + ions determined from 463-472 nm band were in equilibrium in nitrogen microwave plasma. The vibrational temperature of N_2 + ions determined from 380-392 nm band was slightly higher than the rotational temperature.
- Solutional temperatures of OH radicals seem to be good estimation of the plasma gas temperature in nitrogen microwave plasma.
- Stable operation with various gases as well as wide range of parameters make MPS an attractive tool for different gas processing at atmospheric pressure and high flow rates.

The National Centre for Research and Development (NCBiR)

